Minimal Surface-Curvature and Visualization
5.5 Curvatures of Minimal Surface When a minimal surface $r(u,v) = (x(u,v),y(u,v),z(u,v))$ is represented by an isothermal coordinate system, we define $\phi_1(w), \phi_2(w), \phi_3(w), f(w)$ and a meromorphic function $g(w)$ as: $$ \phi_1(w) = \frac{\partial x}{\partial u} - i \frac{\partial x}{\partial v}, \quad \phi_2(w) = \frac{\partial y}{\partial u} - i \frac{\partial y}{\partial v}, \quad \phi_3(w) = \frac{\partial z}{\partial u} - i \frac{\partial z}{\partial v}, \quad f = \phi_1 - i\phi_2, \quad g = \frac{\phi_3}{\phi_1 - i\phi_2} $$ ...